
Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

Exploiting Action Categories in Learning Complex
Games

Mihai S. Dobre
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB

Scotland
Email: m.s.dobre@sms.ed.ac.uk

Alex Lascarides
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB

Scotland
Email: alex@inf.ed.ac.uk

Abstract—This paper presents a model for planning in a highly
complex game, where certain action types are more common
than others and cyclic behaviour can also easily arise. These
issues are addressed by exploiting the inherent structure among
the possible options to enhance the online learning algorithm:
sampling during Monte Carlo Tree Search becomes a two step
process, by first sampling from a distribution over the types of
legal actions followed by sampling from individual actions of
the chosen type. This policy drastically reduces the breadth of
the rollout as well as its depth by avoiding redundant sampling
behaviour. The result is a large increase in both the performance
and efficiency of the model. Another contribution of this paper is
assessing the benefits of a parallel implementation and afterstates
in complex games. Evaluation is done via agent simulations in
the board game Settlers of Catan. The resulting agent is the first
based on purely online learning strategies that can handle the full
set of legal actions of the game. The evaluation shows that our
model outperforms previous state-of-the-art agents while taking
decisions in a time threshold tolerated by human opponents.

Keywords—model-based reinforcement learning; Monte Carlo
Tree Search; complex games; hierarchical sampling; online learn-
ing; Settlers of Catan

I. INTRODUCTION

Learning optimal policies by using reinforcement learning
is well established, and in simple games these approaches can
find an exact solution [1]. But for games where the search
space is massive, deriving reliable policies for every state one
might encounter is infeasible. A popular alternative is to use
online methods to estimate the expected utility of the legal
actions every time a state is encountered, without keeping the
result in memory. Monte Carlo Tree Search (MCTS) [2] has
become a popular online planning method, with considerable
success in complex games such as Go [3]. MCTS addresses
the vast dimensionality by dynamically building the game tree
as it encounters new states [4].

Despite these characteristics, the performance of MCTS
degrades with the length of the planning horizon, because the
complexity of the planning problem increases exponentially
(this is known as the curse of history). One solution for
handling this problem is to define a hierarchy subroutine, also
known as Macro actions, which are composed of a sequence
of primitive actions. Dietterich [5] introduced the MAXQ
framework and proposed the Taxi problem for evaluating the
performance of hierarchical planners. Vien and Toussaint [6]

have extended the MCTS planning framework accordingly, via
a hierarchy of pre-defined subtasks that in turn reduce the set of
policies that can be considered. As a result, the computational
cost shrinks considerably, with the effect proportional to the
length of the macro actions [7].

These hierarchical models assume that subgoals can be
easily identified by the developers [5]. They haven’t been
applied to very complex games where it is impossible to
exhaustively define all possible subgoals. If they were, it would
only partly reduce the computational cost, due to long rollouts.
He, Brunskill and Roy [7] show that macro-actions can be
automatically generated given a set of parameters (such as
the number of macro-actions and their maximum length). But
our aim is to create an agent whose decision time a human
opponent can tolerate, so any such generative methods would
have to be applied offline. Furthermore, macro actions impose
a structure on the task. So, defining some but not all of the
possible subgoals limits the possible policies that the agent
can learn, with the inherent risk that the optimal policy isn’t
among them.

There are also well developed ways of dealing with a large
branching factor of some complex games, such as grouping
the moves in MCTS according to some characteristic and
combining their statistics in the tree. This approach is known
as Move Groups, in which the moves are clustered based on
a specific characteristic defined in advance [8]. Another very
similar method is to group the chance actions that can be
executed from one state into a single group, which is called
node-groups [9], [10]. All these grouping techniques have only
been applied to the selection part of MCTS (that is the question
of which next action among all the possible next actions the
algorithm should compute an expected utility for). In other
complex games, splitting the decision into multiple steps and
choosing the order of the steps have greatly increased the
performance of the algorithm [11], [12]. All of the methods
described above place a large burden on the developer, who
must have detailed knowledge of the game characteristics: e.g.
which kinds of actions tend to contribute to which goals.

In this paper we present a novel approach to sampling the
decision space of a complex planning problem, which increases
both performance and efficiency. Instead of defining macro-
actions or grouping actions based on a specific metric, we
exploit the natural hierarchy of the actions as it is defined in

IEEE 1 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

the environment. We therefore sample from the set of legal
action types before sampling the specifics of each type during
rollouts in MCTS. This results in a reduced branching factor
and a reduced depth by avoiding redundant behaviour. Such an
approach has numerous benefits, particularly in domains where
the sets of distinct action types varies a lot in size but their
respective benefits are generally comparable. We evaluate the
performance of the model against two state-of-the art baselines
in the board game Settlers of Catan. Our model is the first
purely online learning implementation that is able to handle
all legal actions of the game and it outperforms all previous
implementations.

II. RELATED WORK

A. Hierarchical planning models

Many existing models exploit a domain’s hierarchy to
reduce the number of policies an RL algorithm needs to con-
sider. Dietterich’s [5] MAXQ framework, which we mentioned
earlier, recursively decomposes the overall value function into
a collection of value functions for the subtasks, subsubtasks
and so on. Experiments on the taxi problem show that the
MAXQ model can converge much faster than Q-learning.
Dietterich however, provides a detailed discussion on how this
approach relies heavily on careful reasoning when designing
certain parts of the hierarchical models, such as defining the
subgoals or the use of state abstraction. In a game as complex
as Settlers of Catan, the smallest mistakes may cause such an
approach to fail.

Vien and Toussaint [6] present an extension of the UCT
and POMCP methods [13] for planning in hierarchical MDPs
and POMDPs. They test performance on the taxi problem and
a partially-observable version of Pacman, reporting significant
improvements over the initial models. However, these domains
are small enough that the agent can store information on the
environment between runs. This isn’t feasible in a game the
size of Settlers of Catan without a very powerful abstraction
method. Another advantage of keeping a Q-table over runs is
that the algorithm can benefit from intermediate or discounted
rewards. But the intermediate rewards are hard to define in
Catan (the current players’ score is not necessarily a good
indicator in the first half of the game) and the length of the
game makes it impossible to discount the simple return of a 1
for a win or 0 for a loss. Finally, exhaustively defining subgoals
in Settlers of Catan is impossible given its complexity. Due
to being a multi-player game, great care must be given in
case subtasks can be blocked by the opponents. This requires
methods for checking if the subgoals are achievable and fine-
tuning parameters, such as the depth of the search.

Instead of defining a subroutine hierarchy, our model
takes advantage of the way the actions group naturally into
distinct categories or types. Our approach ensures a uniform
distribution over the types of actions when exploring the
search space, such that the employed policy will not be biased
towards preferring the type of action whose set of (concrete)
options vastly outnumbers those of another type. This model
is related to Hierarchical Bayes, where a prior distribution
over the hyperparameters yields a more expressive model [14].
The hierarchy that we have defined is similar to a semantic
hierarchy which can be used to reduce the search space, e.g.

in computer vision, such a semantic hierarchy can be exploited
to acquire labels more efficiently during annotation tasks [15].

B. Monte Carlo Tree Search

Move Groups is a proposed method for reducing the
branching of the tree by grouping moves based on a specific
characteristic [8]. Therefore an extra decision node is intro-
duced at each level of the tree and the statistics of the children
nodes are combined at the parent node. This approach works
well when there is some correlation between the moves such
that the information on one move gained during the search
generalises to the other moves belonging to the same group.
In the past, certain similarity metrics (e.g. Manhattan distance)
have been used to generate groups that are not necessarily
disjoint, i.e. one move may belong to several groups. Move
groups has been applied to the stochastic game of Chinese
Dark Chess to represent all the revealing actions that can be
executed in one state by a single node. This is referred to as
node-groups [9], [10].

Other methods split a move into several parts and allow
the MCTS to decide on each sequentially [11], [12], [16]. This
approach requires expert knowledge of the domain to choose
the parts as well as the order these are executed in. Cowling et
al. [16] mention that the important decisions should be higher
in the tree. Therefore, in their implementation on the game
Magic: The Gathering, they chose the order of these decisions
based on the mana cost of each card. Due to how the statistics
of these action parts are stored in a tree structure, the secondary
parts are “grouped” and have as parent one of the former parts
of the action. It also greatly reduces the branching factor of
the tree. So it roughly resembles the Move Group method, but
these are two different approaches.

There are also many methods for improving the rollouts in
the MCTS algorithm, but mostly these make use of existing
rule-based implementations or hand-crafted heuristics to bias
the search. Previous methods employed an existing agent to
search the game [17], [18] or define their own rules based
on expert knowledge [16], [19]. These methods are sometimes
referred to as pseudorandom games [11]. The rules used in
previous implementations need to be devised in advance and
may not generalise to all cases in the game. Furthermore, the
resulting policy is a deterministic policy that could get stuck
in a loop.

Instead of defining similarity metrics or modifying the deci-
sion process as presented in the existing literature, our method
exploits how the actions are naturally grouped into categories
by the game rules. Furthermore, we apply this grouping to the
sampling stage of the MCTS algorithm instead of the selection
step. Different to the heuristic rollouts previously employed,
our rollouts follow a stochastic policy. In the two step sampling
that we describe in section V, where we first sample the type
and then sample from that type’s distinct options, there is a
shift in the probability mass towards the type of actions that are
less likely to be selected due to the small number of options.
In this paper we use a uniform distribution to select action
types and to select the following options. It can easily be
extended with domain knowledge by weighting the types and
their options accordingly.

IEEE 2 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

C. Settlers of Catan

Prior work on modelling agents that play Settlers of Catan
varies on: (a) the extent to which they rely on hand-coded
heuristics vs. machine learning, (b) on how large a portion of
the game they aim to model, and (c) on the empirical data that
informs their approach. The agent released with the JSettlers
platform [20] doesn’t use any machine learning. Instead, it
forms a decision tree based on a symbolic estimate as to
how quickly the player reaches 10 victory points (and so
wins the game). This estimate is computed from hand-coded
heuristics. Guhe and Lascarides [21] improved the original
JSettlers heuristics to create what we call the Stac agent.
To our knowledge this is the strongest rule-based Settlers of
Catan agent and, like ours, it can play according to the game’s
complete set of options.

Pfeiffer [22] presented a method that combines low-level
reinforcement learning mechanisms with hand-crafted, high-
level heuristics. The heuristics are intended to reflect human
expert policies on medium-term goals. The author reported
that the system could win against some human players, and
also observed that the very complex hand-coded heuristics for
choosing the high-level actions were critical to success. On
the other hand, Szita, Chaslot and Spronck [23] developed the
SmartSettlers agent that applies MCTS with only a limited
amount of domain knowledge on a simplified version of the
game, removing the agent’s ability to negotiate and trade
resources with other players. Their results show a considerable
increase in playing strength compared to the original JSettlers
agent [20].

We will evaluate our agent’s performance against the
SmartSettlers agent (on the reduced game) and the Stac agent
(on the full game). We will also compare our agent against a
version of itself that doesn’t exploit the action type hierarchy.

III. RESOURCES

A. Settlers of Catan

Settlers of Catan is a multi-player win-lose board game.
We focus on the core game for 4 players. The players build
roads, settlements and cities on the board, which is formed of
hexagonal tiles. The first player to reach 10 victory points wins
the game. One obtains victory points in a variety of ways (e.g. a
settlement is worth 1 point and a city is worth 2 points). Board
tiles represent one of the five resources (Clay, Ore, Sheep,
Wood and Wheat), desert, water or ports. Each of the resource
producing tiles has an associated number between 2 and 12
(but not 7). Players obtain resources via the location of their
buildings and dice rolls that start each turn of the game. One
needs different combinations of resources to build different
pieces (e.g. a road costs 1 clay and 1 wood). In addition to
dice rolls, players can acquire resources through trades with
the bank (at a 4:1 ratio), or with a port if they have built a
settlement or city there (3:1 or 2:1, depending on the port) or
through negotiated trades with other players. There are many
special actions which increase the complexity of the game,
such as: (i) playing development cards that each give different
advantages, (ii) moving the robber and stealing resources from
other players and (iii) gaining victory points via the longest
road or largest army (see www.catan.com for details).

B. Game analysis

Settlers of Catan incorporates a clear structure to its
actions. These can be grouped into several types, e.g. trade
actions or build road actions. The cardinality of one class
almost always dominates those of others (i.e. there are always
more trade options). Many other games share this characteristic
- e.g. Civilisation, Diplomacy, Battlestar Galactica to name a
few. The way our model avoids MCTS’s inherent bias towards
choosing an action of a dominant type can be applied to these
games too.

From a game theoretic perspective, Settlers of Catan is a
very complex game. In addition to the incomplete information
(i.e. the opponent’s policies), the game contains elements of
imperfect information (the resources that opponents possess
and the unplayed development cards) and it is stochastic (dice
rolls determine the players’ resources). It has a large branching
factor e.g. there’s a wide range of negotiation actions one
can employ to trade the necessary resources with others. The
generation of the board is done by shuffling the 19 land hexes
and the 9 port hexes, so the game has a huge space of possible
initial states (≈ 1.2∗1015 compared to 1 for the game of Go).
As far as we are aware, there is no analytic solution. Table I
contains approximations of the branching and depth factors,
given 3 different sampling policies. The results corresponding
to the human and agent policies have been averaged over 60
human games [24] and 1000 simulated games respectively. Due
to how these games have been logged, trades are considered
as a single exchange action and the preceding negotiations are
not taken into account, hence the depths in Table I are smaller
than in reality.

TABLE I. AVERAGE BRANCHING AND DEPTH. MANY OF THE HUMAN
GAMES HAVE 2 OR 3 PLAYERS, HENCE THE SMALLER DEPTH

Policy Branch Depth
Heuristic 69 234
Human 63 152
Random 64 11639

Game Modifications: First of all, we make the players
hands visible, but we keep the order of the deck of the
development cards hidden and treat the action of buying a
development card as a chance event. This does not modify
the set of legal actions, but it turns the game into one of
perfect information. The baseline agents that we use to evaluate
our approach will therefore also have perfect information. The
game’s imperfect information is a problem that we intend to
handle in a future version of our player and it is unrelated to
this paper’s contribution.

The purpose of the following modifications is to level the
playing field between the evaluated agents and the baselines.
Since the rule-based agents only consider 1:1, 1:2 and 2:1
resource trades, our MCTS agent’s set of legal actions against
Stac opponents is also limited to these. There are still a large
set of possible trades (up to 540). Finally, since SmartSettlers
agents don’t trade, our MCTS agent playing against them
doesn’t trade either. Otherwise, the SmartSettlers agent would
be disadvantaged; limiting an agent’s trade capability handi-
caps it [25].

IEEE 3 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

IV. MONTE CARLO TREE SEARCH

MCTS is a planning method for finding optimal solutions
that combines random sampling of the decision space with the
precision of a search tree [2], [4]. The high-level structure is
presented in Algorithm 1.

create n root node;
while within computational budget do

n← TREE POLICY(n);
r ← ROLLOUT POLICY(n);
BACKPROPAGATION(n, r);

end
return BEST ACTION(n);

Algorithm 1: The basic MCTS algorithm

Upper Confidence bounds for Trees (UCT) is a very
successful node selection criterion used in the tree policy, with
an overall better performance than ε-greedy methods [26], [27].
During the tree traversal phase of MCTS, the child nodes with
the highest UCT value are selected. The UCT value of a node j
is computed as shown in Equation 1, where Xj is the value of
the node represented as number of wins out of the number of
plays via this node, n the number of times its parent node was
tried, nj the number of times it was tried and C is a constant
used to decide on the level of exploration. The standard tree
policy is shown in Algorithm 2.

UCTj = Xj + C

√
2 lnn

nj
(1)

while n is non-terminal do
if n is a leaf node then

return EXPAND(n);
else

n← SELECT UCT(n);
end

end
return n;

Algorithm 2: Standard TREE POLICY

The search starts from the root node corresponding to the
current state in the game and slowly builds up a tree by
adding one node per iteration. A new node is added in the
expansion step of the algorithm, which is executed when a
leaf node is encountered during the tree policy. The rollout
step follows, which utilises the game model to play the game
until a terminal state is reached. The policy used (πa), chooses
an action uniformly at random from the list of legal actions
and is called the default policy. Finally, the statistics stored in
the nodes are updated based on the result of the rollout. When
the computational budget limit is reached, the best action is
executed in the real game. There are multiple methods for
choosing this action: max child, robust child [4]. For our
implementation we select the action that yields the highest
reward average (Xj) to be played in the real game.

MCTS can be extended to multi-player games, by keeping
track of the statistics for each player in the nodes and mod-
elling the turn change in the game logic. Non-deterministic
actions can be handled by introducing chance nodes, where the

s← n.getState();
while s is non-terminal do

a ∼ πa(s));
s← performAction(s, a);

end
return reward for s;

Algorithm 3: Standard ROLLOUT POLICY

following move is a nature move. These select the outcome of
the player’s action based on a distribution that’s determined
by the game rules (e.g. the player rolls a die and nature
chooses one of the 6 outcomes via an even distribution). There
are several extensions that support reasoning about partially-
observable moves and imperfect information, but we leave this
to future work.

A. Parallelising MCTS

We wish to balance the need of exploring the game space to
yield decent strategies with the need to decide on the next move
within a time interval that human opponents would tolerate.
We achieve this by exploiting efficiency gains afforded by
parallelising MCTS. There are three alternatives: leaf paral-
lelisation, root paralellisation and tree parallelisation [28]. We
have chosen tree parallelisation, which keeps a single copy
of the tree that is shared by all threads. Our implementation
synchronises the update and expansion steps of the algorithm,
while storing the tree in a synchronised data structure. We have
also added virtual loss to discourage multiple threads from
taking the same path through the tree. A lock-free version
implementation is straightforward to write, but we have not
observed any major efficiency improvements. This could be
due to the relatively small number of threads compared to
other implementations such as AlphaGo [3] and large variance
in game length causing the threads to be in different parts of
the tree or steps of the algorithm most of the time.

V. MCTS WITH THE ACTION TYPE HIERARCHY

The base MCTS algorithm relies on Monte Carlo sampling
of the space to ensure that an accurate estimation of the
current state’s value can be performed given a sufficient
computational budget. The default sampling policy assumes
a uniform distribution over the legal actions given the current
state. These actions could belong to the same class of actions
for simple games or could belong to one of many classes in
more complex games. In the case where there is a single class,
or if the number of action options belonging to each class is
similar, the uniform sampling over all the legal options would
ensure a sufficiently unbiased estimation. But, if the cardinality
of different classes is very different, the resulting policy is
more likely to execute an action that belongs to a dominant
class. The resulting estimation would be accurate only if the
MCTS agent’s opponents in the real game have a similar policy
(i.e. one where they tend to perform actions from a dominant
class). This is highly unlikely if there isn’t a huge benefit to
executing one of the options from the dominant class over
those of other classes.

Large complex games, such as most of the multi-player
board games or video games (e.g the Civilisation series, Diplo-
macy, Battlestar Galactica), generally have a large branching

IEEE 4 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

factor and present a clearly defined structure in the rules of
the game. This structure permits the classification of states
and actions into types, which learning algorithms can exploit.
Furthermore, in most games, the number of actions in each
type varies widely: e.g. in turn-based games, the end turn type
cardinality will almost always be smaller than the other classes.
In complex games with this characteristic, not only will
learning be biased towards action types of large cardinality,
but a policy that prefers the actions belonging to the dominant
type(s) also creates redundant or cyclic behaviour (e.g. the
trade type actions in Settlers of Catan). This is caused by either
the policy avoiding the action types that are needed to finish
the game or the dominant type presenting options that revert
the state back to an earlier one (e.g. the move action of an agent
in a maze like environment). Moreover, such a policy may be
a weak policy if the action type is not sufficient: e.g. in Catan,
trades are necessary to gain access to scarce resources, but
executing other action types is required to win the game.

Turning the Monte Carlo sampling into a two step process
– where first the action type is sampled followed by the action
description from the options belonging to the class – would
address all the above limitations. In Settlers of Catan for
example, road building is a different type of action to city
building; but the specific description of such actions include
where to place the piece on the board. Accordingly, our model
first chooses between building a road or a city, followed by
the location from the legal options for the chosen type. This
approach will also reduce the branching factor of the game:
only the options belonging to one type are listed as options and
the number of classes is inherently smaller than the number of
all options. Finally, it allows for more game specific sampling
tricks, e.g. if the trade type is selected in Catan, we can sample
resources from the two participant’s hands directly instead of
sampling from the larger space of all the trade options.

Table II contains the list of types that a player encounters
in what we call normal phase of the Settlers of Catan game
[29]. Most of the game is spent in this phase in which players
usually have to decide between multiple types of actions. The
table also includes the probability of options belonging to a
type being present, the average number of options belonging
to the type when this is present and the maximum number of
options for each type computed over all the decisions made
in this phase during 10k games. These games were generated
using the standard random policy of selecting uniformly at
random from all legal actions indifferent of their type. The
high values for the trade actions indicates that players have
to generally decide between many trade options and a few
options belonging to other classes. A uniform at random
policy over this set is much more likely to choose a trade
action. This also explains why the depth of games generated
following the random policy is greater than the ones using
a more reasonable one such as the rule-based agent’s policy
(see Table I). As mentioned before, Settlers of Catan and other
similar turn-based games include the end turn type that will
always have a single option and it will always be available.
In some situations, ending the turn might be desirable over
other options (e.g. a player can build a road, but may want to
keep its resources so it can build a settlement in the following
turn). This small cardinality compared to the other types,
means that the action is unlikely to be tried if other types
are also available. Finally, the random policy is more likely to

build a road over other pieces. We checked the end state of
random games and the board is usually completely occupied
with roads.

TABLE II. THE LIST OF ACTION TYPES DURING THE NORMAL PHASE
OF THE GAME, THE PROBABILITY OF THE TYPE OF ACTION BEING

AVAILABLE, THE AVERAGE NUMBER OF OPTIONS WHEN IT IS AVAILABLE
AND THE MAXIMUM NUMBER OF OPTIONS. COLLECTED FROM 10K

GAMES PLAYED USING THE STANDARD RANDOM OVER ALL OPTIONS
POLICY

Action type Probability Average Maximum
Build road 0.0547 5.48 19
Build settlement 0.0331 2.82 13
Build city 0.0122 2.71 5
Buy development card 0.0114 1 1
Trade with opponent 0.9982 64.8 512
Trade with bank/port 0.2361 4.47 20
Play knight card 0.0001 16.16 29
Play monopoly card 0.0010 3.92 5
Play discovery card 0.0005 15 15
Play free road card 0.0023 6.35 34
End turn 1 1 1

A. Extending the Rollout policy

We now present the formal details. Let T be the set of
action types and t ∈ T . a is an action option from the set
At of options belonging to type t. n is a tree node and s
is the corresponding game state. Algorithm 4 shows how the
rollout policy can incorporate a step of selecting the action
type based on a policy πt then select the action description
based on policy πa. In the simple case, which is also what we
evaluate in our experiments, these two policies select uniformly
at random from the available options. This would be sufficient
to address the concerns presented in the previous section.
However, this model can easily be combined with an opponent
model or a better sampling strategy if one is available, just by
training a set of parameters that define the distribution over
types and the distribution over action descriptions for a given
type. Just as a Hierarchical Bayes model defines richer priors,
this separation allows a more expressive opponent model to
be implemented and permits more interesting combinations of
Monte Carlo planning with data driven models. We will refer
to the agent that implements the presented sampling strategy as
TypedMCTS, while the standard MCTS method will be known
as MCTS.1

s← n.getState();
while s is non-terminal do

T ← ListLegalActionTypes(s);
t ∼ πt(s, T ));
At ← ListLegalActionsOfType(s, t);
a ∼ πa(s,At));
s← performAction(s, a);

end
return reward for s;

Algorithm 4: Extended ROLLOUT POLICY

VI. INTRODUCING NEGOTIATIONS AND TRADES

We now describe how negotiations and trades are modelled
and how the planning method interfaces with the real game.
This is clearly a challenging task. Negotiations are composed

1The code will be released at https://github.com/sorinMD/MCTS.

IEEE 5 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

of the actions of offer, reject and accept. When a player
accepts another’s offer, the exchange of resources is executed.
We are not allowing our MCTS agent to make offers during
an opponent’s turn due to timing issues and the complexity
of handling such behaviour. Instead it must choose between
accepting or rejecting. However our results show that our agent
with these limits still outperforms the Stac agent, which doesn’t
have these limits.

In addition to increasing the complexity of the search space,
the planned offer may fail to result in a trade in the real
game (the opponent can reject the offer). Despite MCTS’s
assumption that the opponents play optimally (i.e. they try to
maximise their expected return), our evaluation section shows
that a large number of offers get refused in the real game.
The usual application of MCTS is to plan and select one best
action to execute in the game, then repeat for each state. But
here there is a risk of cyclic behaviour: the planning model may
choose the same futile trade offer repeatedly.2 A solution is to
implement a tabu list that keeps track of the failed offers while
replanning, but this would increase complexity. Replanning
from the same state would replicate the same effort several
times and would slow down the experiments. Our solution is
to rank all available actions according to their value, which
was already estimated in the first search, and try to execute
these actions in decreasing order. The agent makes a new plan
when an action is successful (indifferent of the action’s type).
If it receives a counter-offer to any of its offers, our agent
treats it as a reject action to speed up the negotiations in the
real game. If the received counter-offer exists in the list of
evaluated actions, it will be considered by our agent only if
nothing better is successful.

Counter-offers are completely ignored during the search.
The list of offers is exhaustive, so any counter-offer will
already be contained in this list. Therefore, this action would
not bring any benefit aside from increasing the depth of the
tree. In future work, we will explore this option again in
combination with reasoning about player types.

As explained before, cyclic behaviour may appear during
sampling: the same state may appear following a sequence
of trade actions. This is especially problematic when the new
nodes haven’t been explored enough and uncertainty in their
current value is high. Due to the tree policy of selecting the
action with the highest UCT value, the current search could
get stuck in an infinite loop. Again a tabu list or certain
restrictions to disallow this cyclic behaviour seem like the
obvious solution. However we have chosen a much simpler and
cheaper alternative, which takes advantage of how the virtual
loss is used during multi-threading. Instead of adding a virtual
loss per thread, we increment a counter of virtual losses every
time a thread enters a node. In time, this cyclic behaviour will
be discouraged. This counter is reset during updates. To avoid
impairing the UCT’s ability to balance between exploration
and exploitation, we only update a node once per rollout no
matter how many times it was accessed during the rollout.

In addition to trades, the cyclic behaviour can be generated
by other moves in the game and by the stochastic effect of
certain actions. This creates a risk of generating a large tree

2This issue could potentially be avoided with an accurate opponent model,
if available.

containing only repeating sequences of actions. Furthermore,
a state can be encountered via different paths in the tree. This
is a characteristic encountered in many large complex games.
To address these concerns we use a transposition table [8] to
keep the tree small by sharing the information between nodes.

VII. AFTERSTATES

The initial UCT selection criterion was proposed in [30]
as an application of the Upper Confidence Bounds (UCB)
algorithm to trees. UCB is used for selecting the next arm to
pick in bandit based problems, therefore the natural translation
would be to apply UCT to select the next action, instead of
the child node. The literature has since branched out in two
methods: the one presented in section IV and a method for
selecting the actions as shown in equation 2 (e.g. [8], [3]).
Q(s, a) is the action value computed as the number of wins
out of the number of plays when action a was chosen in state
s, N(s) is the number of times s was encountered before and
N(s, a) is the number of times action a was selected in state
s. These two approaches would be equivalent if the nodes
encountered in the tree are unique (i.e. the corresponding states
are unique) and all the actions are deterministic. This is not
the case in complex games and our test environment is no
exception.

UCTa = Q(s, a) + C

√
2 lnN(s)

N(s, a)
(2)

As mentioned before, a state can be reached by executing
different sequences of actions. Moreover, executing different
actions in different states could result in the same outcome
state. The outcome state is known in the literature as an
afterstate [1] or a post-decision state [31] (see Figure 1 for a
simple illustration). These states account for non-deterministic
actions since they represent states immediately after a decision
was made but right before any of the stochastic effects are
performed. In addition to separating the deterministic effect
from the stochastic effect of an action, the state space (as well
as the afterstate space) is much smaller than that of the state-
action pairs. Therefore using the value of the states could be
more economical and efficient than using the action value [31].
Another benefit of afterstates is that different state-action pairs
produce the same outcome state, so their value must be the
same [1]. By using the afterstate value in the computation as
in Equation 1, the results of the rollouts following either of
the two pairs are shared.

The best model presented in this paper uses the UCT
computation as presented in Equation 1 in combination with
chance nodes when actions are non-deterministic, thus being
equivalent to defining post-decision states. An empirical com-
parison to the one presented in Equation 2 is done in the final
results subsection.

VIII. RESULTS

A. General performance

We will briefly mention the performance of the multi-
threaded version of the agent on a server with Intel Xeon quad-
core CPUs at 3GHz frequency. Our model requires a single

IEEE 6 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

S1

S3

a1

S2

a2

S′3

Pa(s, s
′)

S1

S3

a1

S2

a2

Fig. 1. Simple example of afterstates or post-decision states. The first graph
from the left accounts for the stochastic effect or other unknown effects of the
environment (including the opponent model). Node S3 from the first graph
is the state prior to the stochastic effect of the action. Two different non-
deterministic actions executed in different states, could have the same afterstate
if their set of successor states and transition probabilities are the same. The
second graph shows the simplified case when the actions are deterministic.

CPU and less than 4GB of RAM. Multiple identical CPUs are
used when the number of threads is over 4. Table III shows the
effects of introducing the second step in the sampling policy
on the depth and time of the random rollouts. Despite the extra
sampling step, the gains are massive and the times presented in
Table IV would be tolerated by human opponents. As expected,
the more iterations are run, the more useful it becomes to
increase the number of threads. We didn’t evaluate the effect
of the number of threads on the agent’s win rate, so we fixed
this number to 4 for our MCTS agents. In the interest of
space we will not present the time required for running the full
MCTS algorithm with the default rollout policy. To illustrate
the differences, a game between 4 players, where one is the
standard (untyped) MCTS agent and 3 are Stac, finishes in 17
minutes. In comparison, a game with one TypedMCTS agent
and 3 Stac agents finishes in under 3 minutes.

Note that running 10k of the typed MCTS algorithm is
cheaper than just running 10k of random rollouts. We believe
this is caused by the focused approach of the tree selection
policy in combination with the importance of the free initial
placement stage. As a last general experiment, we have tuned
the exploration parameter C and noticed that a value of 1 is
better than any higher values.

TABLE III. COMPARING THE TYPED SAMPLING AGAINST THE SINGLE
STEP SAMPLING OVER 10K CATAN GAMES. THE TIME SPENT IS IN

MILLISECONDS. BOTH METHODS ARE SINGLE-THREADED

Policy time depth
Default 583384 11639
Typed 8530 420

TABLE IV. TIME IN MILLISECONDS REQUIRED FOR THE MCTS
ALGORITHM WITH TYPED SAMPLING OVER 100 CATAN GAMES

Rollouts Threads
1 4 8 16

10k 5252 1717 1187 1192
30k 23021 5615 4046 3539
40k 30289 7170 5787 4943
50k 31736 8636 7242 6394

B. Agent Evaluation

We are evaluating our agents in the JSettlers environment;
similar to the approach in [21]. The performance of an agent
is measured by running simulations of 2000 games between
4 players: one of the players is the (modified) agent we are
evaluating and the other 3 are baseline agents. So, a player

that is of equal strength to the baseline agent would win 25%
of the games. We tested the significance of win rates against
this null hypothesis using the z-test and a threshold p < 0.01.
This makes any win rate between 22.5-27.5% not significantly
different from the null hypothesis (i.e. a win rate of 25%).
Since all results presented below are significant, we will not
include the z scores in the tables.

Table V contains the performance of the TypedMCTS agent
against 3 (state of the art, hand crafted, rule-based) Stac agents
when varying the number of rollouts. If trades between players
were not allowed, the performance of the TypedMCTS agent
would cap at 43% with 30k rollouts. With trades, the game
is much more complex and we can still observe an increase
even at 50k rollouts, but at the expense of increasing the
decision time. For the remainder of the experiments we fixed
the number of rollouts of our MCTS agents to 10k, unless
otherwise specified.

TABLE V. WIN RATES OF THE TYPEDMCTS AGENT AGAINST 3 STAC
AGENTS, GIVEN THE NUMBER OF ROLLOUTS THE TYPEDMCTS AGENT

CAN PERFORM. TRADES BETWEEN PLAYERS ARE ALLOWED

5k 10k 20k 30k 50k
22.2% 33.8% 45.65% 51.27% 53.37%

We have observed that the MCTS agents make on average a
large number of offers and this number is only slightly reduced
as the number of rollouts is increased. Only 15% of the offers
get accepted by the opponents. Since such a behaviour may
seem annoying to a human opponent, we introduced a limit
on the number of offers allowed before a different action type
must be executed. Table VI shows the performance and number
of offers a TypedMCTS agent makes when it plays against 3
Stac agents. Since the planning method is not aware of this
limit, we expected the performance of the agent to be reduced.
However this was only the case when less than 5 trades are
allowed before a different move must be made. Despite making
half the number of offers when compared to the unlimited
agent, the agent that is limited to 10 trades had an increased
win percentage. This result could indicate several things. One
of them is that agents, like humans, miscalculate the equilibria
during negotiations. Secondly, it is likely that the number of
rollouts is insufficient to adequately differentiate between trade
actions and the other options. Otherwise, we believe the agent
would make fewer offers before executing a different action
type. Looking at the games collected in the corpus by [24],
a decent human player makes on average far fewer offers
compared to novice players. Another possible cause for the
reduced performance when the number of offers are unlimited
could be that the Stac opponents may benefit from our agent’s
eagerness to trade. Even though the Stac agents use rule-based
policies and would only accept trades that are relevant to
their current plan, proposing so many exchanges increases the
chances of making one that is relevant to their plan. We believe
a human player would be able to exploit the unlimited agent’s
behaviour, so we intend to explore introducing this limit into
the planning algorithm in a future version of the agent.

Table VII shows the performance of our TypedMCTS
agent against the two current state of the art agents, Stac
and SmartSettlers. The table contains the performance of the
modified agents specified on the first column of the table. To
clarify, TypedMCTS wins 33.8% of the games versus 3 Stac

IEEE 7 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

TABLE VI. WIN RATES AND AVERAGE NUMBER OF OFFERS PER
GAME OF THE TYPEDMCTS AGENT GIVEN THE NUMBER OF OFFERS IT
IS ALLOWED TO MAKE BEFORE EXECUTING A DIFFERENT ACTION TYPE

Offers allowed 3 5 10 unlimited
Win Rate 30.45% 33.8% 36.1% 33.8%
No. offers 93 148 258 527

agents, while one Stac agent wins only 15.18% of the games
against 3 TypedMCTS. Evaluating the agent both ways ensures
against the possibility of the modified agent winning due to
having a different policy to the three baseline agents. To level
the playing field between the two planning agents, we wanted
to limit the time each agent can take to deliberate before exe-
cuting an action. Unfortunately, SmartSettlers doesn’t contain
an option to set this limit, so we had to limit the number of
rollouts instead. 10k rollouts for our agent takes approximately
the same amount of time as 2k rollouts for the SmartSettlers
one.

TABLE VII. PERFORMANCE OF THE TYPEDMCTS AGENT WITH 10K
ROLLOUTS AGAINST THE 2 STATE OF THE ART AGENTS: STAC AND

SMARTSETTLERS. TRADING IS ALLOWED IN THE GAMES AGAINST STAC,
BUT NOT IN THE GAMES AGAINST SMARTSETTLERS

Modified Baseline
Stac SmartSettlers TypedMCTS

Stac – – 15.18%
SmartSettlers – – 18.67%
TypedMCTS 33.8% 36.39% –

The final set of experiments presented in this section will
evaluate the benefits of the action type hierarchy over the
vanilla MCTS method. Due to the expensive planning of
the standard MCTS method, we run games only against our
proposed model and the Stac agent. Also, the legal trades
options have been reduced to only 1 for 1 exchanges for this
experiment. Otherwise, the standard MCTS method would take
to long to finish the search, given the time required to perform
random rollouts as shown in Table III. We have performed this
experiment twice: once when the rollout was fixed to 10k for
both planning methods (Table VIII); and the second where a
budget limit of 1.5 seconds up to a maximum of 50k rollouts
was introduced (Table IX). As before, the modified agents are
specified on the first column and the corresponding baseline
on the second row.

TABLE VIII. PERFORMANCE OF THE MCTS AGENTS WITH AND
WITHOUT THE TYPE CATEGORISATION AND A LIMIT OF 10K ROLLOUTS

Modified Baseline
Stac MCTS TypedMCTS

MCTS 22.34% – 9.58%
TypedMCTS 33.8% 54.3% –

TABLE IX. PERFORMANCE OF THE MCTS AGENTS WITH AND
WITHOUT THE TYPE CATEGORISATION AND A LIMIT OF 1.5 SECONDS (UP

TO A MAXIMUM OF 50K ROLLOUTS)

Modified Baseline
Stac MCTS TypedMCTS

MCTS 6.55% – 0.81%
TypedMCTS 27.98% 88.57% –

C. Afterstates

All our MCTS agents so far compute the UCT value
using afterstates, i.e. Equation 1. We now evaluate an agent

that doesn’t use afterstates in computing the UCT value, i.e.
Equation 2. We will refer to the agent that employs the latter
as TypedMCTS-NA and we compare it against the best MCTS
agent presented in the previous sections, i.e. TypedMCTS.
As before, the Stac agents were used as a baseline and the
two variations are also pitched against each other. Trades
are allowed in this experiment, since all agents can handle
these actions. We have tuned the exploration parameter of the
TypedMCTS-NA agent and observed that the best value for this
agent is 2. Table X outlines the large benefit of afterstates,
as the TypedMCTS-NA agent doesn’t perform significantly
different to the Stac agents and is much weaker than the
TypedMCTS. This result backs up the hypothesis that using
the value of the outcome state during UCT calculations can
reduce the complexity of the space.

TABLE X. PERFORMANCE OF THE MCTS ALGORITHM WITH AND
WITHOUT AFTERSTATES. BOTH MCTS METHODS PERFORMED 10K
ROLLOUTS PER DECISION AND USED THE TYPED ROLLOUT POLICY

Modified Baseline
Stac TypedMCTS-NA TypedMCTS

TypedMCTS-NA 9.23% – 3.42%
TypedMCTS 33.8% 71% –

IX. POSSIBLE EXTENSIONS

In addition to various improvements mentioned throughout
the paper, one possible extension is to integrate the action type
category in the tree policy as shown in Algorithm 5. π∗t can
either be a selection policy based on an opponent model or
could employ the standard selection based on the UCT value.
If the latter is chosen, the UCT value of a type can be computed
by selecting the maximum from the options belonging to the
corresponding type, resulting in an algorithm equivalent to
the standard single step selection. Alternatively, a discounted
reward or an average of the values of all the options belonging
to the action type can be employed. Such a selection strategy
gives precedence to choosing the action type over choosing
the action description and the performance may depend on the
environment description. The expansion part of MCTS may
also need to add the type nodes to the tree. This approach is
very similar to the standard move groups [8], except that the
groups are chosen based on the type of action and therefore
are disjoint.

while n is non-terminal do
if n is not expanded then

return EXPAND(n);
else

s← n.getState();
T ← ListLegalActionTypes(s);
t ∼ π∗t (s, T ));
At ← ListLegalActionsOfType(s, t);
a← SELECT UCT(s,At);
s← performAction(s, a);
n← Tree.getNode(s);

end
end
return n;

Algorithm 5: Extended TREE POLICY

IEEE 8 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

X. CONCLUSION

We have presented a method of enhancing the MCTS
framework with action type categories to yield the state of the
art player for a very complex game. The results show that an
agent based on this method is stronger than the existing state
of the art implementations and an equivalent MCTS process
without action types. Furthermore, the proposed approach
increases the efficiency of the planning method such that
the decision time is cut to a reasonable threshold for human
opponents. The technique presented in this paper can be easily
used in any game that presents similar characteristics. As future
work, we intend to evaluate the presented method on other
complex games.

ACKNOWLEDGMENTS

We thank the reviewers for their helpful suggestions. This
work is supported by ERC grant 269427 (STAC) and Engi-
neering and Physical Sciences Research Council (EPSRC).

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge University Press, 1998.

[2] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in In: Proceedings Computers and Games 2006. Springer-
Verlag, 2006.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–503, 2016.

[4] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of monte carlo tree search methods,” Computational Intelligence and
AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1–43, March
2012.

[5] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ
value function decomposition,” J. Artif. Intell. Res. (JAIR), vol. 13, p.
227303, 2000.

[6] N. A. Vien and M. Toussaint, “Hierarchical monte-carlo planning,” in
Proc. of The Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI 15), 2015.

[7] R. He, E. Brunskill, and N. Roy, “Puma: Planning under uncertainty
with macro-actions.” in AAAI, M. Fox and D. Poole, Eds. AAAI Press,
2010.

[8] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and move
groups in monte carlo tree search.” in CIG, P. Hingston and L. Barone,
Eds. IEEE, 2008, pp. 389–395.

[9] N. Jouandeau and T. Cazenave, “Monte-carlo tree reductions for
stochastic games,” in Technologies and Applications of Artificial In-
telligence, 19th International Conference, TAAI 2014, Taipei, Taiwan,
November 21-23, 2014. Proceedings, 2014, pp. 228–238.

[10] ——, “Small and large MCTS playouts applied to chinese dark chess
stochastic game,” in Computer Games - Third Workshop on Computer
Games, CGW 2014, Held in Conjunction with the 21st European Con-
ference on Artificial Intelligence, ECAI 2014, Prague, Czech Republic,
August 18, 2014, Revised Selected Papers, 2014, pp. 78–89.

[11] J. Kloetzer, H. Iida, and B. Bouzy, “The monte-carlo approach in
amazons,” in Proc. Comput. Games Workshop,Amsterdam, Netherlands,
2007, pp. 113–124.

[12] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set monte
carlo tree search.” IEEE Trans. Comput. Intellig. and AI in Games,
vol. 4, no. 2, pp. 120–143, 2012.

[13] D. Silver and J. Veness, “Monte-carlo planning in large pomdps.” in
NIPS, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 2164–2172.

[14] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The
MIT Press, 2009.

[15] J. Deng, O. Russakovsky, J. Krause, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Scalable Multi-Label Annotation,” in CHI, 2014.

[16] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble determinization
in monte carlo tree search for the imperfect information card game
magic: The gathering.” IEEE Trans. Comput. Intellig. and AI in Games,
vol. 4, no. 4, pp. 241–257, 2012.

[17] M. Dobre and A. Lascarides, “Online learning and mining human
play in complex games,” in Proceedings of the IEEE Conference on
Computational Intelligence in Games (CIG), Tainan, Taiwan, 2015.

[18] S. Branavan, D. Silver, and R. Barzilay, “Learning to win by reading
manuals in a monte-carlo framework,” Journal of Artificial Intelligence
Research, vol. 43, pp. 661–704, 2012.

[19] G. Chaslot, C. Fiter, J.-B. Hoock, A. Rimmel, and O. Teytaud, “Adding
expert knowledge and exploration in monte-carlo tree search,” in Pro-
ceedings of the 12th International Conference on Advances in Computer
Games, ser. ACG’09. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
1–13.

[20] R. Thomas, “Real-time decision making for adversarial environments
using a plan-based heuristic,” Ph.D. dissertation, Department of Com-
puter Science, Northwestern University, 2004.

[21] M. Guhe and A. Lascarides, “Game strategies in the settlers of catan,”
in Proceedings of the IEEE Conference on Computational Intelligence
in Games, Dortmund, 2014.

[22] M. Pfeiffer, “Machine learning applications in computer games,” Mas-
ter’s thesis, Institute for Theoretical Computer Science, Graz University
of Technology, 2003.

[23] I. Szita, G. Chaslot, and P. Spronck, “Monte-carlo tree search in settlers
of catan,” in Advances in Computer Games, H. van den Herik and
P. Spronck, Eds. Springer, 2010, pp. 21–32.

[24] S. Afantenos, N. Asher, F. Benamara, A. Cadilhac, C. Degremont,
P. Denis, M. Guhe, S. Keizer, A. Lascarides, P. M. Oliver Lemon,
S. Paul, V. Rieser, and L. Vieu, “Developing a corpus of strategic
conversation in the settlers of catan,” in Proceedings of the 1st Workshop
on Games and NLP, Kanazawa, Japan, 2012.

[25] M. Guhe, A. Lascarides, K. O’Connor, and V. Rieser, “Effects of
belief and memory on strategic negotiation,” in Proceedings of the 17th
Workshop on the Semantics and Pragmatics of Dialogue (DialDam),
Amsterdam, 2013.

[26] N. R. Sturtevant, “An analysis of uct in multi-player games.” ICGA
Journal, vol. 31, no. 4, pp. 195–208, 2008.

[27] R.-K. Balla and A. Fern, “Uct for tactical assault planning in real-
time strategy games,” in Proceedings of the 21st International Jont
Conference on Artifical Intelligence, ser. IJCAI’09. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp. 40–45.

[28] G. Chaslot, M. H. M. Winands, and H. J. van den Herik, “Parallel
monte-carlo tree search.” in Computers and Games, ser. Lecture Notes
in Computer Science, H. J. van den Herik, X. Xu, Z. Ma, and M. H. M.
Winands, Eds., vol. 5131. Springer, 2008, pp. 60–71.

[29] M. Dobre and A. Lascarides, “Combining a mixture of experts with
transfer learning in complex games,” in Proceedings of the AAAI Spring
Symposium: Learning from Observation of Humans, Stanford, USA,
2017.

[30] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
Proceedings of the 17th European Conference on Machine Learning,
ser. ECML’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 282–
293.

[31] C. Szepesvári, Algorithms for Reinforcement Learning, ser. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2010.

IEEE 9 | P a g e


